Array Antennas - Theory & Design

S. R. Zinka
srinivasa_zinka@daiict.ac.in

October 16, 2014
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Cylindrical and Spherical Coordinate Systems

\[\vec{r} = x\hat{x} + y\hat{y} + z\hat{z} \]

\[\vec{r} = \rho \cos \phi \hat{x} + \rho \sin \phi \hat{y} + z\hat{z} \]

\[\vec{r} = r \sin \theta \cos \phi \hat{x} + r \sin \theta \sin \phi \hat{y} + r \cos \theta \hat{z}, \]
Array Factor

\[
AF = \sum_n A_n \exp\left[jk_0 \left(|\vec{r}| - |\vec{r} - \vec{r}_n| \right) \right]
\]
Approximation of $| \vec{r} - \vec{r}' |$ - Cartesian System

In Cartesian coordinate system,

\[
\vec{r'} = x' \hat{x} + y' \hat{y} + z' \hat{z}, \quad \text{and} \\
\vec{r} = r \sin \theta \cos \phi \hat{x} + r \sin \theta \sin \phi \hat{y} + r \cos \theta \hat{z}.
\]

So,

\[
| \vec{r} - \vec{r'} | = | r \sin \theta \cos \phi \hat{x} + r \sin \theta \sin \phi \hat{y} + r \cos \theta \hat{z} - x' \hat{x} - y' \hat{y} - z' \hat{z} |
\]

\[
= \sqrt{(r \sin \theta \cos \phi - x')^2 + (r \sin \theta \sin \phi - y')^2 + (r \cos \theta - z')^2}
\]

\[
= \sqrt{r^2 - 2rx' \sin \theta \cos \phi - 2ry' \sin \theta \sin \phi - 2rz' \cos \theta + x'^2 + y'^2 + z'^2}
\]

\[
\approx \sqrt{r^2 - 2rx' \sin \theta \cos \phi - 2ry' \sin \theta \sin \phi - 2rz' \cos \theta}
\]

\[
= r \sqrt{1 - \frac{2x' \sin \theta \cos \phi + 2y' \sin \theta \sin \phi + 2z' \cos \theta}{r}}
\]

\[
\approx r \left(1 - \frac{1}{2} \frac{2x' \sin \theta \cos \phi + 2y' \sin \theta \sin \phi + 2z' \cos \theta}{r} \right)
\]

\[
= \left[r - \left(x' \sin \theta \cos \phi + y' \sin \theta \sin \phi + z' \cos \theta \right) \right].
\]

(1)
Approximation of $|\vec{r} - \vec{r}'|$ - Cylindrical System

In Cylindrical coordinate system,

$$\vec{r}' = \rho' \cos \phi' \hat{x} + \rho' \sin \phi' \hat{y} + z' \hat{z}, \text{ and}$$

$$\vec{r} = r \sin \theta \cos \phi \hat{x} + r \sin \theta \sin \phi \hat{y} + r \cos \theta \hat{z}.$$

So, following the same procedure given in the previous slide

$$|\vec{r} - \vec{r}'| \approx r - (x' \sin \theta \cos \phi + y' \sin \theta \sin \phi + z' \cos \theta)$$
$$= r - (\rho' \cos \phi' \sin \theta \cos \phi + \rho' \sin \phi' \sin \theta \sin \phi + z' \cos \theta)$$
$$= r - (\rho' \sin \theta (\cos \phi' \cos \phi + \sin \phi' \sin \phi) + z' \cos \theta)$$
$$= r - (\rho' \sin \theta \cos (\phi - \phi') + z' \cos \theta).$$ \hspace{2cm} (2)
Approximation of $|\vec{r} - \vec{r}'|$ - Spherical System ***

In Spherical coordinate system,

$$\vec{r}' = r' \sin \theta' \cos \phi' \hat{x} + r' \sin \theta' \sin \phi' \hat{y} + r' \cos \theta' \hat{z}, \text{ and}$$

$$\vec{r} = r \sin \theta \cos \phi \hat{x} + r \sin \theta \sin \phi \hat{y} + r \cos \theta \hat{z}.$$

So, following the same procedure given in the previous slide

$$|\vec{r} - \vec{r}'| \approx r - (x' \sin \theta \cos \phi + y' \sin \theta \sin \phi + z' \cos \theta)$$

$$= r - (r' \sin \theta' \cos \phi' \cos \theta' \sin \phi' \sin \theta + r' \cos \theta' \cos \theta)$$

$$= r - (r' \sin \theta \sin \theta' (\cos \phi' \cos \phi + \sin \phi' \sin \phi) + r' \cos \theta' \cos \theta)$$

$$= r - (r' \sin \theta \sin \theta' \cos (\phi - \phi') + r' \cos \theta' \cos \theta). \quad (3)$$
So, Array Factor in Cartesian Co-ordinate System is ...

\[
AF = \sum_n A_n \exp \left[jk_0 \left(|\vec{r}| - |\vec{r} - \vec{r}_n| \right) \right]
\]

\[
\approx \sum_n A_n \exp \left\{ jk_0 \left[|\vec{r}| - \left(\vec{r} - \left(x'_n \sin \theta \cos \phi + y'_n \sin \theta \sin \phi + z'_n \cos \theta \right) \right) \right\}
\]

\[
= \sum_n A_n \exp \left(jk_0 \left(x'_n \sin \theta \cos \phi + y'_n \sin \theta \sin \phi + z'_n \cos \theta \right) \right)
\]

\[
= \sum_n A_n \exp \left(jk_0 \sin \theta \cos \phi x'_n + jk_0 \sin \theta \sin \phi y'_n + jk_0 \cos \theta z'_n \right)
\]

\[
= \sum_n A_n \exp \left(jk_0 x'_n + jk_0 y'_n + jk_0 z'_n \right)
\]

(4)

For continuous arrays, the above equation reduces to

\[
AF = \iiint A(x', y', z') \exp \left(jk_0 x' + jk_0 y' + jk_0 z' \right) \, dx' \, dy' \, dz'.
\]

(5)

Does the above equation remind you of anything?
Array Factor of a Uniformly Spaced Linear Array

\[AF = \sum_n A_n \exp (j k x_n + j k y_n + j k z_n') \]

\[= \sum_n A_n \exp (j k x_n') \]

\[= \sum_n A_n \exp (j k x na) \] (6)
Array Factor of a Uniformly Spaced Planar Array

\[AF = \sum_n A_n \exp (j k_x x_n' + j k_y y_n' + j k_z z_n') \]

\[= \sum_n A_n \exp (j k_x x_n' + j k_y y_n') \]

\[= \sum_p \sum_q A_{pq} \exp (j k_x x_{pq}' + j k_y y_{pq}') \]

\[= \sum_p \sum_q A_{pq} \exp \left[j k_x \left(pa + \frac{qb}{\tan \gamma} \right) + j k_y qb \right] \] \hspace{1cm} (7)
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Continuous Linear Array

\[AF(k_x) = \int_{-\infty}^{\infty} A(x') \exp(jk_x x') \, dx' \]
Discrete **Uniformly Spaced** Linear Array

\[
AF(k_x) = \sum_{n} A_n \exp(jk_x x'_n) = \sum_{n} A_n \exp(jk_x na)
\]
Discrete **Uniformly Spaced** Linear Array

Array Factor Linear Arrays Linear Arrays - Examples Planar Arrays Planar Arrays - Examples Synthesis Multiple Beam Arrays Problems

Discrete Uniformly Spaced Linear Array

\[AF(k_x) = \sum_n A_n \exp(jk_x x'_n) = \sum_n A_n \exp(jk_x na) \]
Discrete **Uniformly Spaced** Linear Array

\[AF(k_x) = \sum_{n} A_n \exp(jk_xx') = \sum_{n} A_n \exp(jk_xna) \]
Discrete Linear Array - **Progressive Phasing**

\[
AF (k_x - k_{x0}) = \sum_n A_n \exp \left[j \left(k_x - k_{x0}\right) x'_n\right] = \sum_n A_n \exp \left[j \left(k_x - k_{x0}\right) na\right] = \sum_n A_n \exp (-jk_{x0}na) \exp (jk_x na)
\]
Maximum Scan Limit

\[
 k_{x0} \leq \left(\frac{2\pi}{a} - k_0 \right) \\
 \Rightarrow k_0 \sin \theta_0 \leq \left(\frac{2\pi}{a} - k_0 \right) \\
 \Rightarrow \theta_0 \leq \sin^{-1} \left(\frac{2\pi}{ak_0} - 1 \right) \\
 \Rightarrow \theta_{0,\text{max}} = \sin^{-1} \left(\frac{2\pi}{ak_0} - 1 \right)
\]
Optimal Spacing

\[k_{x0} \leq \left(\frac{2\pi}{a} - k_0 \right) \]

\[k_0 \sin \theta_{0,\text{max}} \leq \left(\frac{2\pi}{a} - k_0 \right) \]

\[a \leq \frac{1}{k_0} \left(\frac{2\pi}{1 + \sin \theta_{0,\text{max}}} \right) \]

\[a_{\text{max}} = \frac{1}{k_0} \left(\frac{2\pi}{1 + \sin \theta_{0,\text{max}}} \right) \]
Beam Broadening

![Graph showing beam broadening](image)

AF (in linear scale)

- **Array Antennas - Theory & Design**
- CT531, DA-IICT
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
1 Continuous Linear Array

Dipole Antenna of Arbitrary Length

\[
\begin{align*}
\mathbf{r} &= x\hat{x} + y\hat{y} + z\hat{z} \\
\mathbf{r}' &= z'\hat{z} \\
dz &= dz' \\
\end{align*}
\]

\[
I_0 \sin \left[k_0 \left(\frac{1}{2} - z' \right) \right] \hat{z}, \quad 0 \leq z' \leq l/2
\]

\[
I_0 \sin \left[k_0 \left(\frac{1}{2} + z' \right) \right] \hat{z}, \quad -l/2 \leq z' \leq 0
\]
1 Continuous Linear Array

Dipole Antenna of Arbitrary Length

Array factor of a continuous linear array antenna oriented along z axis is given as

$$AF(k_z) = \int_{-1/2}^{+1/2} A(z') \exp(jk_z z') dz'$$

$$= \int_{-1/2}^{0} \left\{ I_0 \sin\left[k_0 \left(\frac{l}{2} + z'\right)\right]\right\} \exp(jk_z z') dz' + \int_{0}^{+1/2} \left\{ I_0 \sin\left[k_0 \left(\frac{l}{2} - z'\right)\right]\right\} \exp(jk_z z') dz'.$$

Also, we can prove the following integral identities (one can use Wolfram Online Integrator):

$$\int \sin\left[k_0 \left(\frac{l}{2} + z'\right)\right] \exp(jk_z z') dz' = e^{jk_z z'} \left\{ \frac{j k_z \sin\left[k_0 \left(\frac{l}{2} + 2z'\right)\right] - k_0 \cos\left[k_0 \left(\frac{l}{2} + 2z'\right)\right]}{k_0^2 - k_z^2} \right\}$$

and

$$\int \sin\left[k_0 \left(\frac{l}{2} - z'\right)\right] \exp(jk_z z') dz' = e^{jk_z z'} \left\{ \frac{j k_z \sin\left[k_0 \left(\frac{l}{2} - 2z'\right)\right] + k_0 \cos\left[k_0 \left(\frac{l}{2} - 2z'\right)\right]}{k_0^2 - k_z^2} \right\}$$
1 Continuous Linear Array

Dipole Antenna of Arbitrary Length

Using the integral identities provided in the previous slide gives

\[
\int_{-l/2}^{0} \left\{ \sin \left[k_0 \left(\frac{l}{2} + z' \right) \right] \right\} \exp (jk_z z') \, dz' = \left[\frac{jk_z \sin \left(\frac{k_0 l}{2} \right) - k_0 \cos \left(\frac{k_0 l}{2} \right)}{k_0^2 - k_z^2} \right] + e^{-jk_z \frac{l}{2}} \left[\frac{k_0}{k_0^2 - k_z^2} \right]
\]

and

\[
\int_{0}^{+l/2} \left\{ \sin \left[k_0 \left(\frac{l}{2} - z' \right) \right] \right\} \exp (jk_z z') \, dz' = e^{jk_z \frac{l}{2}} \left[\frac{k_0}{k_0^2 - k_z^2} \right] - \left[\frac{jk_z \sin \left(\frac{k_0 l}{2} \right) + k_0 \cos \left(\frac{k_0 l}{2} \right)}{k_0^2 - k_z^2} \right].
\]

So, array factor of a finite length dipole is given as

\[
AF = I_0 \left\{ \left(e^{jk_z \frac{l}{2}} + e^{-jk_z \frac{l}{2}} \right) \left[\frac{k_0}{k_0^2 - k_z^2} \right] - \frac{2k_0 \cos \left(\frac{k_0 l}{2} \right)}{k_0^2 - k_z^2} \right\}
\]

\[
= I_0 \left\{ 2k_0 \times \left[\frac{\cos \left(\frac{k_0 l}{2} \right) - \cos \left(\frac{k_0 l}{2} \right)}{k_0^2 - k_z^2} \right] \right\}. \tag{8}
\]
1 Continuous Linear Array

Dipole Antenna of Arbitrary Length

Finally, we need to multiply array factor with element pattern corresponding to a Hertzian dipole oriented along z direction which is given readily in the below table.

<table>
<thead>
<tr>
<th>E_{θ}</th>
<th>ηH_{ϕ}</th>
<th>E_{ϕ}</th>
<th>$-\eta H_{\theta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_e = \hat{x}' \delta (x') \delta (y') \delta (z')$</td>
<td>$\kappa \cos \theta \cos \phi$</td>
<td>$-\kappa \sin \phi$</td>
<td></td>
</tr>
<tr>
<td>$J_e = \hat{y}' \delta (x') \delta (y') \delta (z')$</td>
<td>$\kappa \cos \theta \sin \phi$</td>
<td>$\kappa \cos \phi$</td>
<td></td>
</tr>
<tr>
<td>$J_e = \hat{z}' \delta (x') \delta (y') \delta (z')$</td>
<td>$-\kappa \sin \theta$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$J_m = \hat{x}' \delta (x') \delta (y') \delta (z')$</td>
<td>$-\left(\frac{\kappa \sin \phi}{\eta}\right)$</td>
<td>$-\left(\frac{\kappa \cos \theta \cos \phi}{\eta}\right)$</td>
<td></td>
</tr>
<tr>
<td>$J_m = \hat{y}' \delta (x') \delta (y') \delta (z')$</td>
<td>$\left(\frac{\kappa \cos \phi}{\eta}\right)$</td>
<td>$-\left(\frac{\kappa \cos \theta \sin \phi}{\eta}\right)$</td>
<td></td>
</tr>
<tr>
<td>$J_m = \hat{z}' \delta (x') \delta (y') \delta (z')$</td>
<td>0</td>
<td>$\left(\frac{\kappa \sin \theta}{\eta}\right)$</td>
<td></td>
</tr>
</tbody>
</table>

where, $\kappa = -\frac{j\eta k_0 e^{-j k_0 r}}{4\pi r}$ and $\eta = \sqrt{\frac{\mu_0}{\varepsilon_0}}$

So, far-field components of a dipole are given as

$$E_{\theta} = \eta H_{\phi} = I_0 \left\{ 2k_0 \times \left[\frac{\cos \left(\frac{k_2 l}{2}\right) - \cos \left(\frac{k_0 l}{2}\right)}{k_0^2 - k_2^2} \right] \right\} \times \frac{j\eta k_0 e^{-j k_0 r}}{4\pi r} \sin \theta$$ (9)
2 Uniformly Spaced Discrete Linear Array (a=\(\frac{\lambda}{2}\))

Uniform Excitation
2 Uniformly Spaced Discrete Linear Array (a=\frac{\lambda}{2})

Uniform Excitation
2 Uniformly Spaced Discrete Linear Array (a=\lambda)

Uniform Excitation

Array Excitation

\[
\begin{array}{c}
\text{Array Excitation} \\
|A_u| \\
\end{array}
\]

Array – Factor in dB scale

\[
\begin{array}{c}
\text{Array – Factor in dB scale} \\
AP (u) \\
\end{array}
\]

u, where \(u = \sin \theta \) in the visible space
2 Uniformly Spaced Discrete Linear Array (a=\lambda)

Uniform Excitation

Normalized Factor in dB scale

Gain-Factor in dB scale
4 Uniformly Spaced Discrete Linear Array - **Scan** (a=\(\lambda \))

Uniform Excitation
5 Discrete Linear **End-fire Array** \((a=\frac{\lambda}{2}) \)

Uniform Excitation

Array Factor Linear Arrays Linear Arrays - Examples Planar Arrays Planar Arrays - Examples Synthesis Multiple Beam Arrays Problems

CT531, DA-IICT
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Continuous Planar Array

Array placed in the xy plane:

$$AF (k_x, k_y) = \iiint A (x', y') \exp (jk_x x' + jk_y y') \, dx' \, dy'$$

Array placed in the yz plane:

$$AF (k_y, k_z) = \iiint A (y', z') \exp (jk_y y' + jk_z z') \, dy' \, dz'$$

Array placed in the xz plane:

$$AF (k_x, k_z) = \iiint A (x', z') \exp (jk_x x' + jk_z z') \, dx' \, dz'$$
Visible Space in k_xk_y domain

\[k_x^2 + k_y^2 \leq k_0^2 \]
Discrete Uniformly Spaced Planar Array

\[AF = \sum_p \sum_q A_{pq} \exp \left[jk_x \left(pa + \frac{qb}{\tan \gamma} \right) + jk_y qb \right] \]
Grating Lobe Locations

\[k_x a = 2 \mu \pi \quad \text{and} \quad \frac{k_x b}{\tan \gamma} + k_y b = 2 \nu \pi, \quad \text{where} \quad \mu, \nu = 0, \pm 1, \pm 2, \ldots \]
Typical Scanning Examples

\[AB = \tan \theta_y \]
\[AC = \tan \theta_x \]
Hemispherical Scanning
Hemispherical Scanning ... Contd
Hemispherical Scanning ... Contd

\[AB = \tan \theta_3 \]

\[x \parallel x'' \]
\[y \parallel y'' \]

\[\phi_1 = 90^\circ \]
\[\phi_3 = 270^\circ \]
PAWE PAWS
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
1 Planar Array (a=\lambda, b=\lambda)

Uniform Excitation
2 Planar Array \((a=\frac{\lambda}{2}, b=\frac{\lambda}{2}) \)

Uniform Excitation
3 Planar Array \((a=\frac{\lambda}{2}, b=\frac{\lambda}{2}) \) ... Scan

Uniform Excitation

![3D Graphs](image-url)
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Uniform Array - If θ^{null} is given

Array factor of a M element linear array oriented along x axis is given as

$$AF(k_x) = \frac{\sin\left(\frac{k_x Ma}{2}\right)}{\sin\left(\frac{k_x a}{2}\right)}.$$

So, first null position is given from the below equation:

$$\frac{k_{x1}^{\text{null}} Ma}{2} = \pi.$$

If null-to-null beamwidth, $2\theta^{\text{null}}$, is given, then

$$\Rightarrow M = \frac{2\pi}{k_{x1}^{\text{null}} a}$$

$$\Rightarrow M = \frac{2\pi}{k_0 \sin \theta^{\text{null}} a}.$$ \hspace{1cm}(10)
Binomial Array

For binomial arrays, array factor is given as

\[AF(k_x) = \left(e^{jk_xa} - e^{jk_{x0}a} \right)^{M-1}. \]

(11)

Reasons for choosing the above array factor are:

- array factor should be a periodic function in \(k_x\) domain with a period of \(\frac{2\pi}{a}\)
- array factor should have an order of \(M - 1\) in \(e^{jk_xa}\) domain
- all the zeros should present at one single location, i.e., \(k_x = k_{x0}\), so that array factor will not have any side-lobes

One can obtain binomial array coefficients by equating (11) to the definition of array factor

\[AF(k_x) = \sum A_m e^{jk_{x}ma}. \]
Dolph-Chebyshev Array

Array factor corresponding to Dolph-Chebyshev array is given as

\[
AF (k_x) = T_{M-1} \left(-c \cos \frac{k_x a}{2} \right)
\] (12)

where Chebyshev polynomial \(T_N (x) \) is defined as

\[
T_N (x) = \begin{cases}
\cos (N \cos^{-1} x), & |x| \leq 1 \\
\cosh (N \cosh^{-1} x), & |x| > 1
\end{cases}
\] (13)

The parameter \(c \) is decided by the given SLR. If the given SLR is \(R \) in linear scale, then \(c \) is decided such that

\[
T_{M-1} (c) = R \Rightarrow \cosh \left[(M - 1) \cosh^{-1} c \right] = R \Rightarrow c = \cosh \left(\frac{\cosh^{-1} R}{M - 1} \right).
\] (14)
Dolph-Chebyshev Array Mapping ... Even Order

\[AF(k_x) = T_{M-1} \left(-c \cos \frac{k_x a}{2} \right) \]
Dolph-Chebyshev Array Mapping ... Odd Order

\[AF(k_x) = T_{M-1} \left(-c \cos \frac{k_x a}{2} \right) \]
Dolph-Chebyshev Array ... Contd

Reasons for choosing array factor given by (12) are as given below:

- array factor should be a periodic function in k_x domain with a period of $\frac{2\pi}{a}$ ($\frac{4\pi}{a}$) for odd (even) numbered arrays
- array factor should have an order of $M - 1$ in e^{jka} domain
- $[-c, +c]$ region of Chebyshev polynomial should get mapped to $[0, \frac{2\pi}{a}]$ region of k_x domain as shown in the previous mapping figures.
Dolph-Chebyshev Array ... Array Factor Zeros

Array factor zeros are given as shown below:

\[
T_{M-1} \left(-c \cos \frac{k_{x,\text{null}} a}{2} \right) = 0
\]

\[
\Rightarrow \cos \left[(M - 1) \cos^{-1} \left(-c \cos \frac{k_{x,\text{null}} a}{2} \right) \right] = 0
\]

\[
\Rightarrow (M - 1) \cos^{-1} \left(-c \cos \frac{k_{x,\text{null}} a}{2} \right) = \pm (2n - 1) \frac{\pi}{2}, \text{ where } n = \pm 1, \pm 2, \pm 3, \ldots
\]

\[
\Rightarrow k_{x,\text{null}} a = 2 \cos^{-1} \left\{ \frac{1}{c} \cos \left[\left(\frac{2n - 1}{M - 1} \right) \frac{\pi}{2} \right] \right\}.
\]

So, array factor can be written in terms of zeros as

\[
AF(k_x) = \prod \left(e^{jk_x a} - e^{j k_{x,\text{null}} a} \right).
\]
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Single Beam Phased Array Antenna System
Multiple Beam Phased Array Antenna System

Radiating elements

Power combiner

Array Antennas - Theory & Design
CT531, DA-IICT
Multiple Beams with Uniform Excitation

Radiating elements

Power combiner

Power combiner
Multiple Beams - Orthogonality

![Graph showing multiple beams and their orthogonality.](image-url)
Multiple Beams - Orthogonality
Multiple Beams - Orthogonality

\[a_n = \sum_{k=0}^{K-1} u_k e^{-jn\psi_k} \]
Multiple Beams - Orthogonality

\[a_n = \sum_{k=0}^{K-1} v_k e^{-jn\psi_k} \]

\[K = N \]

\[\psi_k = \psi_0 + \frac{2\pi k}{N} \]
FFT Algorithm

\[a_n = \sum_{k=0}^{N-1} v_k e^{-jn \frac{2\pi k}{N}} \]

\[= \sum_{m=0}^{N/2-1} v_{2m} e^{-jn \frac{2\pi m}{N}} + \sum_{m=0}^{N/2-1} v_{2m+1} e^{-jn \frac{2\pi (2m+1)}{N}} \]

\[= \sum_{m=0}^{N/2-1} v_{2m} e^{-jn \frac{2\pi m}{N/2}} + e^{-jn \frac{\pi}{N}} \sum_{m=0}^{N/2-1} v_{2m+1} e^{-jn \frac{2\pi m}{N/2}} \]

\[= P_n + W_N^n Q_n \]

\[a_0 = P_0 + W_N^0 Q_0 \]
\[a_1 = P_1 + W_N^1 Q_1 \]
\[a_2 = P_2 + W_N^2 Q_2 \]
\[\vdots \]
\[a_{N/2-1} = P_{N/2-1} + W_N^{N/2-1} Q_{N/2-1} \]
\[a_{N/2} = P_0 - W_N^0 Q_0 \]
\[a_{N/2+1} = P_1 - W_N^1 Q_1 \]
\[\vdots \]
\[a_{N-1} = P_{N/2-1} - W_N^{N/2-1} Q_{N/2-1} \]
FFT Algorithm ... Contd

\[P_n = \sum_{m=0}^{N/2-1} v_{2m} e^{-jn \frac{2\pi m}{N/2}} \]

\[Q_n = \sum_{m=0}^{N/2-1} v_{2m+1} e^{-jn \frac{2\pi m}{N/2}} \]

\[P_n = U_n + W_n^{n/2} V_n \]

\[P_{n+\frac{N}{4}} = U_n - W_n^{n/2} V_n \]

\[W_{\tau N} = W_N^n \]

\[Q_n = Y_n + W_n^{n/2} Z_n \]

\[Q_{n+\frac{N}{4}} = Y_n - W_n^{n/2} Z_n \]

\[P_n = U_n + W_N^{2n} V_n \]

\[P_{n+\frac{N}{4}} = U_n - W_N^{2n} V_n \]
Example: 8 Point FFT
4 Beam Array

\[\begin{align*}
&v_0 \\
&v_2 \\
&v_1 \\
&v_3 \\
\end{align*} \quad \begin{align*}
&\text{Radiating elements} \\
&a_0 \\
&a_1 \\
&a_2 \\
&a_3 \\
\end{align*} \quad \begin{align*}
&z, z' \\
&x, x' \\
\end{align*} \]
4 Beam Array ... Highlighting Butterfly Section
Butterfly Implementation in Analog Domain
So, Finally 4 Beam Analog Array is ...
Outline

1. Array Factor
2. Linear Arrays
3. Linear Arrays - Examples
4. Planar Arrays
5. Planar Arrays - Examples
6. Synthesis
7. Multiple Beam Arrays
8. Problems
Linear Arrays - I

1. Calculate the array factor of a continuous linear array oriented along z' axis and having an aperture distribution

\[
A(z') = \begin{cases}
1, & |z'| \leq \frac{L}{2} \\
0, & \text{elsewhere}.
\end{cases}
\]

Also calculate (a) the directions in which array factor exhibits zero radiations (i.e., null directions), and (b) null-to-null beamwidth.

2. Calculate the array factor of a discrete uniformly spaced linear array oriented along x' axis and having uniform aperture distribution. Assume that the array is having M number of elements (M can be either even or odd) and the spacing between any two consecutive elements is a. Also calculate (a) the directions in which array factor exhibits zero radiations (i.e., null directions), and (b) null-to-null beamwidth.

3. Prove that array factor of any uniformly spaced odd numbered array, located symmetrically with respect to origin will be periodic in k_x domain with a periodicity of $\frac{2\pi}{a}$. Also prove that array factor of any even numbered array located symmetrically with respect to origin will be periodic in k_x domain with a periodicity of $\frac{4\pi}{a}$.
For a given linear array oriented along x axis and having an uniform spacing of 15mm, calculate the progressive phase shift required to scan the beam from broad-side direction (i.e., $\theta = 0^\circ$) to (a) $\theta_0 = 30^\circ$ (b) $\theta_0 = 90^\circ$. Assume that the operating frequency of the array is 10 GHz.

For a given linear array oriented along x axis and having an uniform spacing of $a = 0.75\lambda$, calculate the maximum scanning that can be done so that grating-lobe doesn’t enter into the visible-space.

If the main beam corresponding to a given linear array has to be scanned to a maximum angle of $\theta_0 = 40^\circ$, then what should be the maximum possible uniform spacing between consecutive elements.
Planar Arrays

1. Calculate the array factor of a discrete uniformly spaced planar array (assume rectangular lattice) placed in the $x'y'$ plane and having uniform aperture distribution along both x' and y' axes. Assume that number of elements and spacing along x' axis are M and a, respectively. Similarly, Assume that number of elements and spacing along y' axis are N and b, respectively.

2. For a given planar array in xy axis and having $a = 15\text{mm}$ and $b = 20\text{mm}$, calculate the progressive phase shifts required to scan the beam from broad-side direction (i.e., $\theta = 0^\circ$) to (a) $\theta_0 = 45^\circ$ and $\phi_0 = 45^\circ$. Assume that the operating frequency of the array is 10 GHz.
Array Synthesis

1. Calculate the number of elements required to obtain an array factor with 10° null-to-null beamwidth. Assume that the array elements are uniformly excited and $a = \lambda / 2$.

2. Design a 5-element Binomial array having all the zeros at $\theta_0 = 30°$ and having an uniform spacing of $a = \lambda / 2$.

3. Design a 5-element Dolph-Chebyshev array having SLR of 30 dB and spacing $a = \lambda / 2$.
Multiple Beam Arrays

1. Develop the 16 point FFT algorithm and construct its signal flow graph.

2. For an 8 element array forming 8 beams (assume that the beams are symmetric with respect to the broadside direction), calculate the **progressive phase shifts** required for forming the beams. Also calculate the corresponding **excitation values for each array element** when all the beams are simultaneously excited.
References
