Outline

1. Introduction
2. Random Variables
3. Random Processes
4. Noise Characterization
Outline

1. Introduction
2. Random Variables
3. Random Processes
4. Noise Characterization
Noise

Noise can be internal too...

Noise is the undesired signal that gets added to the desired signal and reaches the destination. Noise ultimately determines the threshold for the minimum signal that can be reliably detected by a receiver.
Noise can be internal too ...
Noise is the **undesired signal** that gets added to the desired signal and reaches the destination.
Noise is the undesired signal that gets added to the desired signal and reaches the destination.

Noise ultimately determines the threshold for the minimum signal that can be reliably detected by a receiver.
Noise

Noise lives with the desired signal. Neither amplification nor the filtering can alleviate the effect of noise on the desired signal. The only way to keep away from the effects of noise is to see that less amount of noise, relative to the desired signal, is present at the destination.
Noise lives with the desired signal. Neither amplification nor the filtering can alleviate the effect of noise on the desired signal.
Noise lives with the desired signal. Neither amplification nor the filtering can alleviate the effect of noise on the desired signal.

The only way to keep away from the effects of noise is to see that less amount of noise, relative to the desired signal, is present at the destination.
External Noise - Sources

• Noise from stars including the sun (20MHz – 1.5GHz)
• Lightning (2MHz – 10MHz)
• Thermal noise from the ground
• Cosmic background noise from the sky
• Man made noise, e.g., spark plugs, engine noise, etc (1MHz – 500MHz)
• Radio, TV, and cellular stations
• Wireless devices
• Microwave ovens
• Deliberate jamming devices
External Noise - Sources

- Noise from stars including the sun (20MHz – 1.5GHz)
- Lightning (2MHz – 10MHz)
- Thermal noise from the ground
- Cosmic background noise from the sky
External Noise - Sources

- Noise from stars including the sun (20MHz – 1.5GHz)
- Lightning (2MHz – 10MHz)
- Thermal noise from the ground
- Cosmic background noise from the sky
- Man made noise, e.g., spark plugs, engine noise, etc (1MHz – 500MHz)
- Radio, TV, and cellular stations
- Wireless devices
- Microwave ovens
- **Deliberate** jamming devices
Internal Noise - Sources

• Thermal noise is the most basic type of noise, being caused by thermal vibration of bound charges. It is also known as Johnson or Nyquist noise.
• Shot noise is due to random fluctuations of charge carriers in an electron tube or solid-state device.
• Flicker noise occurs in solid-state components and vacuum tubes. Flicker noise power varies inversely with frequency, and so is often called 1/f noise.
• Plasma noise is caused by random motion of charges in an ionized gas, such as a plasma, the ionosphere, or sparking electrical contacts.
• Quantum noise results from the quantized nature of charge carriers and photons; it is often insignificant relative to other noise sources.
Internal Noise - Sources

- **Thermal noise** is the most basic type of noise, being caused by thermal vibration of bound charges. It is also known as Johnson or Nyquist noise.
Internal Noise - Sources

- **Thermal noise** is the most basic type of noise, being caused by thermal vibration of bound charges. It is also known as Johnson or Nyquist noise.

- **Shot noise** is due to random fluctuations of charge carriers in an electron tube or solid-state device.
Internal Noise - Sources

- **Thermal noise** is the most basic type of noise, being caused by thermal vibration of bound charges. It is also known as Johnson or Nyquist noise.
- **Shot noise** is due to random fluctuations of charge carriers in an electron tube or solid-state device.
- **Flicker noise** occurs in solid-state components and vacuum tubes. Flicker noise power varies inversely with frequency, and so is often called $1/f$ noise.
Internal Noise - Sources

- **Thermal noise** is the most basic type of noise, being caused by thermal vibration of bound charges. It is also known as Johnson or Nyquist noise.
- **Shot noise** is due to random fluctuations of charge carriers in an electron tube or solid-state device.
- **Flicker noise** occurs in solid-state components and vacuum tubes. Flicker noise power varies inversely with frequency, and so is often called $1/f$ noise.
- **Plasma noise** is caused by random motion of charges in an ionized gas, such as a plasma, the ionosphere, or sparking electrical contacts.
Internal Noise - Sources

- **Thermal noise** is the most basic type of noise, being caused by thermal vibration of bound charges. It is also known as Johnson or Nyquist noise.
- **Shot noise** is due to random fluctuations of charge carriers in an electron tube or solid-state device.
- **Flicker noise** occurs in solid-state components and vacuum tubes. Flicker noise power varies inversely with frequency, and so is often called 1/f noise.
- **Plasma noise** is caused by random motion of charges in an ionized gas, such as a plasma, the ionosphere, or sparking electrical contacts.
- **Quantum noise** results from the quantized nature of charge carriers and photons; it is often insignificant relative to other noise sources.
In some cases, such as radiometers or radio astronomy systems, the desired signal is actually the noise power received by an antenna, and it is necessary to distinguish between the received noise power and the undesired noise generated by the receiver system itself.
As you have seen, there are many types of noise sources. However, we will concentrate more on thermal noise. Can you guess the reason?
Before proceeding further, let’s **recap** the theory of random variables and processes ...
Outline

1. Introduction
2. Random Variables
3. Random Processes
4. Noise Characterization
Introduction

Random Variables

Random variable

Outcome of a random experiment could be numerical or non-numerical.

Non-numerical example: coin tossing experiment – Head or Tail.

For non-numerical outcomes, one can assign certain numbers.

We may assign 1 for Head and -1 for Tail.

When such numerical values are assigned to a variable, the variable is called a random variable.

For the coin tossing experiment, variable x can take either 1 or -1 depending on the outcome.

Probability of a random variable x taking values x_i is $P_x(x_i)$.

Discrete random variable: If $\{x_i\}$ are distinct, then x is a discrete random variable, such that $\sum_i P_x(x_i) = 1$.

Random Variables, Processes, and Noise

Communication Systems, Dept. of EEE, BITS Hyderabad
Random Variable

Outcome of a random experiment could be numerical or non-numerical.
Random Variable

Outcome of a random experiment could be \textit{numerical} or \textit{non-numerical}.

Non-numerical example: coin tossing experiment – \textit{Head} or \textit{Tail}.
Random Variable

Outcome of a random experiment could be \textit{numerical} or \textit{non-numerical}.

For non-numerical outcomes, one can \textbf{assign} certain numbers.

Non-numerical example: coin tossing experiment – \textbf{Head} or \textbf{Tail}.
Random Variable

Outcome of a random experiment could be numerical or non-numerical.

For non numerical outcomes, one can assign certain numbers.

Non-numerical example: coin tossing experiment – Head or Tail.

We may assign 1 for Head and -1 for Tail.
Random Variable

Outcome of a random experiment could be **numerical** or **non-numerical**.

For non-numerical outcomes, one can **assign** certain numbers.

When such **numerical values** are **assigned** to a variable, the variable is called a random variable.

Non-numerical example: coin tossing experiment – **Head** or **Tail**.

We may assign 1 for Head and -1 for Tail.
Random Variable

Outcome of a random experiment could be **numerical** or **non-numerical**.

For non numerical outcomes, one can **assign** certain numbers.

When such **numerical values are assigned to a variable**, the variable is called a random variable.

Non-numerical example: coin tossing experiment – **Head** or **Tail**.

We may assign 1 for Head and -1 for Tail.

For the coin tossing experiment, variable x can take either 1 or -1 depending on the outcome.
Random Variable

Outcome of a random experiment could be **numerical** or **non-numerical**.

For non-numerical outcomes, one can **assign** certain numbers.

When such **numerical values are assigned to a variable**, the variable is called a random variable.

Probability of a random variable x taking values x_i is $P_x(x_i)$.

Non-numerical example: coin tossing experiment – **Head** or **Tail**.

We may assign 1 for Head and -1 for Tail.

For the coin tossing experiment, variable x can take either 1 or -1 depending on the outcome.
Random Variable

Outcome of a random experiment could be **numerical** or **non-numerical**.

For non-numerical outcomes, one can **assign** certain numbers.

When such **numerical values are assigned to a variable**, the variable is called a **random variable**.

Probability of a random variable x taking values x_i is $P_x(x_i)$.

Non-numerical example: coin tossing experiment – **Head** or **Tail**.

We may assign 1 for Head and -1 for Tail.

For the coin tossing experiment, variable x can take either 1 or -1 depending on the outcome.

Discrete random variable: If $\{x_i\}$ are **distinct**, then x is a discrete random variable, such that

$$\sum_i P_x(x_i) = 1.$$
Continuous Random Variables

Continuous RV can assume any value in a given interval. The probability density function (PDF) is the appropriate definition for continuous random variables. Probability for a continuous RV is defined in terms of PDF as

\[
P(x_1 \leq x \leq x_2) = \int_{x_1}^{x_2} p(x) \, dx.
\]

Of course,

\[
\int_{-\infty}^{\infty} p(x) \, dx = 1.
\]

And cumulative distribution function (CDF) is defined as

\[
F(x) = P(x \leq x) = \int_{-\infty}^{x} p(x) \, dx.
\]
Continuous Random Variables

Continuous RV can assume any value in a given interval.
Continuous Random Variables

Continuous RV can assume any value in a given interval.

Probability density function (PDF) $p_x(x)$ is the appropriate definition for continuous random variables.
Continuous Random Variables

Continuous RV can assume any value in a given interval.

Probability density function (PDF) $p_x(x)$ is the appropriate definition for continuous random variables.

Probability for a continuous RV is defined in terms of PDF as

$$P(x_1 \leq x \leq x_2) = \int_{x_1}^{x_2} p_x(x) \, dx. \quad (1)$$
Continuous Random Variables

Continuous RV can assume any value in a given interval.

Probability density function (PDF) \(p_x (x) \) is the appropriate definition for continuous random variables.

Probability for a continuous RV is defined in terms of PDF as

\[
P (x_1 \leq x \leq x_2) = \int_{x_1}^{x_2} p_x (x) \, dx.
\]

(1)

Of course,

\[
\int_{-\infty}^{\infty} p_x (x) \, dx = 1.
\]

(2)
Continuous Random Variables

Continuous RV can assume any value in a given interval.

Probability density function (PDF) $p_x (x)$ is the appropriate definition for continuous random variables.

Probability for a continuous RV is defined in terms of PDF as

$$P (x_1 \leq x \leq x_2) = \int_{x_1}^{x_2} p_x (x) \, dx. \quad (1)$$

Of course,

$$\int_{-\infty}^{\infty} p_x (x) \, dx = 1. \quad (2)$$

And cumulative distribution function (CDF) is defined as

$$F_x (x) = P (x \leq x) = \int_{-\infty}^{x} p_x (x) \, dx. \quad (3)$$
Statistical Averages – Means

For a continuous RV case, the mean is given by

$$\bar{x} = \mathbb{E}[x] = \int_{-\infty}^{\infty} x p(x) \, dx.$$ (4)

Mean of a function \(y = g(x)\) of a random variable is

$$g(x) = \mathbb{E}[g(x)] = \int_{-\infty}^{\infty} g(x) p(x) \, dx.$$ (5)

The above expression can be generalized for two random variables is of a random variable as

$$g(x, y) = \mathbb{E}[g(x, y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) p_{xy}(x, y) \, dx \, dy.$$ (6)
Statistical Averages – Means

For a continuous RV case, the mean is given by

\[\bar{x} = E[x] = \int_{-\infty}^{\infty} xp_x(x) \, dx. \quad (4) \]
Statistical Averages – Means

For a continuous RV case, the mean is given by

\[\bar{x} = E[x] = \int_{-\infty}^{\infty} xp_x(x) \, dx. \] (4)

Mean of a function \((y = g(x))\) of a random variable is

\[\overline{g(x)} = E[g(x)] = \int_{-\infty}^{\infty} g(x) p_x(x) \, dx. \] (5)
Statistical Averages – Means

For a continuous RV case, the mean is given by

$$\bar{x} = E[x] = \int_{-\infty}^{\infty} xp_x(x) \, dx.$$ \hfill (4)

Mean of a function \((y = g(x))\) of a random variable is

$$\bar{g}(x) = E[g(x)] = \int_{-\infty}^{\infty} g(x) p_x(x) \, dx.$$ \hfill (5)

The above expression can be generalized for two random variables is of a random variable as

$$\bar{g}(x,y) = E[g(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) p_{xy}(x,y) \, dx.$$ \hfill (6)
Statistical Averages – Moments

The nth moment of a random variable x is defined as

$$
\hat{x}^n = \int_{-\infty}^{\infty} x^n p_x(x) \, dx.
$$

Similarly, the nth central moment of a random variable x is defined as

$$
(\overline{x}^n = \int_{-\infty}^{\infty} (x - \overline{x})^n p_x(x) \, dx.
$$

The second central moment of an RV x is called variance and denoted by

$$
\sigma^2_x = (x - \overline{x})^2 = x^2 - 2\overline{x}x + \overline{x}^2 = x^2 - \overline{x}^2.
$$
Statistical Averages – Moments

The *nth moment* of a random variable x is defined as

$$
\bar{x}^n = \int_{-\infty}^{\infty} x^n p_x(x) \, dx.
$$

(7)
Statistical Averages – Moments

The \textit{nth moment} of a random variable \(x \) is defined as

\[\overline{x^n} = \int_{-\infty}^{\infty} x^n p_x (x) \, dx. \] \hfill (7)

Similarly, the \textit{nth central moment} of a random variable \(x \) is defined as

\[(x - \overline{x})^n = \int_{-\infty}^{\infty} (x - \overline{x})^n p_x (x) \, dx. \] \hfill (8)
Statistical Averages – Moments

The \textit{\textbf{\text{}nth moment}} of a random variable x is defined as

$$\bar{x}^n = \int_{-\infty}^{\infty} x^n p_x(x) \, dx.$$ \hfill (7)

Similarly, the \textit{\textbf{\text{}nth central moment}} of a random variable x is defined as

$$\overline{(x - \bar{x})^n} = \int_{-\infty}^{\infty} (x - \bar{x})^n p_x(x) \, dx.$$ \hfill (8)

The second central moment of an RV x is called \textit{\textbf{\text{}variance}} and denoted by σ_x^2, where σ_x is known as \textit{\textbf{\text{}standard deviation}}.

$$\sigma_x^2 = \overline{(x - \bar{x})^2}$$
$$= x^2 - 2\bar{x}^2 + \bar{x}^2 = \bar{x}^2 - \bar{x}^2$$ \hfill (9)
Statistical Averages – Corollary
Statistical Averages – Corollary

If x and x are independent RVs and

$$z = x + y,$$ \hspace{1cm} (10)
Statistical Averages – Corollary

If x and y are independent RVs and

$$z = x + y,$$ \hspace{1cm} (10)

then

$$\bar{z} = \bar{x} + \bar{y}$$ \hspace{1cm} (11)

$$\sigma_z^2 = \sigma_x^2 + \sigma_y^2.$$ \hspace{1cm} (12)
Central-Limit Theorem
Central-Limit Theorem

If x and x' are independent RVs and

$$z = x + y,$$ (13)
Central-Limit Theorem

If x and x are independent RVs and

$$z = x + y,$$

(13)

then

$$p_z(z) = \int_{-\infty}^{\infty} p_x(x) p_y(z - x) \, dx.$$

(14)

From the above equation, it is clear that the PDF $p_z(z)$ is the convolution of PDFs $p_x(x)$ and $p_y(y)$. This result can be extended to n number of RVs.
Central-Limit Theorem

If \(x \) and \(y \) are independent RVs and

\[
z = x + y, \quad (13)
\]

then

\[
p_z(z) = \int_{-\infty}^{\infty} p_x(x) p_y(z-x) \, dx. \quad (14)
\]

From the above equation, it is clear that the PDF \(p_z(z) \) is the convolution of PDFs \(p_x(x) \) and \(p_y(y) \). This result can be extended to \(n \) number of RVs.

Under certain conditions, the sum of large number of independent random variables tends to be a Gaussian random variable, independent of the PDFs of the random variables involved. This is the central-limit theorem.
Central-Limit Theorem – Demonstration
Central-Limit Theorem – Demonstration
Central-Limit Theorem – Demonstration

\[p_x(x) \]

\[p_x(x) \ast p_x(x) \]
Central-Limit Theorem – Demonstration

$p_x(x)$

$-1 \quad 1$

x

$p_x(x) \ast p_x(x)$

$-2 \quad 2$

x

$p_x(x) \ast p_x(x) \ast p_x(x)$

$-3 \quad 3$

x
The Gaussian (Normal) PDF

The probability density function (PDF) of a Gaussian random variable is given by:

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean and σ is the standard deviation.

The cumulative distribution function (CDF) is given by:

$$F(x; \mu, \sigma) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$$

where erf is the error function.
The Gaussian (Normal) PDF

\[p_x (x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[F_x (x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1 - Q \left(\frac{x - \mu}{\sigma} \right) \]
The Gaussian (Normal) PDF

\[p_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[F_x(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1 - Q\left(\frac{x - \mu}{\sigma}\right) \]
The Gaussian (Normal) PDF

\[p_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[F_x(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx = 1 - Q \left(\frac{x - \mu}{\sigma} \right) \]
The Gaussian (Normal) PDF

\[p_x (x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[F_x (x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1 - Q \left(\frac{x - \mu}{\sigma} \right) \]
The Gaussian (Normal) PDF

\[p_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[F_x(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1 - Q \left(\frac{x - \mu}{\sigma} \right) \]
The Gaussian (Normal) PDF

\[p_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

\[F_x(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx = 1 - Q\left(\frac{x-\mu}{\sigma}\right) \]
The Gaussian (Normal) PDF – Interpretation
The Gaussian (Normal) PDF – Interpretation
Outline

1. Introduction
2. Random Variables
3. Random Processes
4. Noise Characterization
Random Process
Random Process

\[x(t, \zeta_1) \]
Random Process

\[
x(t, \zeta_1)
\]
\[
x(t, \zeta_2)
\]
Random Process
Random Process

\[x(t, \zeta_1) \]

\[x(t, \zeta_2) \]

\[x(t, \zeta_3) \]

\[x(t, \zeta_4) \]
Random Process

Sample function

t

Sample function

t

Sample function

t

Sample function

t

$x(t, \zeta_1)$

$x(t, \zeta_2)$

$x(t, \zeta_3)$

$x(t, \zeta_4)$
Random Process

$x(t, \zeta_1)$

$x(t, \zeta_2)$

$x(t, \zeta_3)$

$x(t, \zeta_4)$

Ensemble
Random Process

$x(t_1) = x_1$

$x(t, \zeta_1)$

Random variable

$x(t, \zeta_2)$

$x(t, \zeta_3)$

$x(t, \zeta_4)$
Random Process

Random variable x is a function of time t. For different values of t, the random variable $x(t)$ takes different realizations, denoted by $x(t_1) = x_1, x(t_2) = x_2, x(t_3), x(t_4)$. Each realization is a possible outcome of the random variable at a given time.
Random Process

A random variable that is a function of time is called a random process or stochastic process. In other words, a random process is just a collection of an infinite number of RVs, which are generally dependent. So, a random process is completely described by the joint PDF $p_{x_1 x_2 \cdots x_n}(x_1, x_2, \ldots, x_n)$ which can also be expressed as $p_{x_1 x_2 \cdots x_n}(x_1, x_2, \ldots, x_n; t_1, t_2, \ldots, t_n)$ or simply $p_{x}(x; t)$.
Random Process

A random variable that is a function of time is called a random process or stochastic process.
Random Process

A random variable that is a function of time is called a random process or stochastic process.

In other words, a random process is just a collection of an infinite number of RVs, which are generally dependent.
Random Process

A random variable that is a function of time is called a random process or stochastic process.

In other words, a random process is just a collection of an infinite number of RVs, which are generally dependent.

So, a random process is completely described by the joint PDF.
Random Process

A random variable that is a function of time is called a random process or stochastic process.

In other words, a random process is just a collection of an infinite number of RVs, which are generally dependent.

So, a random process is completely described by the joint PDF

\[p_{x_1x_2\cdots x_n}(x_1, x_2, \ldots, x_n) \]
Random Process

A random variable that is a function of time is called a random process or stochastic process.

In other words, a random process is just a collection of an infinite number of RVs, which are generally dependent.

So, a random process is completely described by the joint PDF

\[p_{x_1 x_2 \cdots x_n} (x_1, x_2, \ldots, x_n) \]

which can also be expressed as

\[p_{x_1 x_2 \cdots x_n} (x_1, x_2, \ldots, x_n; t_1, t_2, \ldots, t_n) \]
Random Process

A random variable that is a function of time is called a random process or stochastic process.

In other words, a random process is just a collection of an infinite number of RVs, which are generally dependent.

So, a random process is completely described by the joint PDF

\[p_{x_1x_2\ldots x_n} (x_1, x_2, \ldots, x_n) \]

which can also be expressed as

\[p_{x_1x_2\ldots x_n} (x_1, x_2, \ldots, x_n; t_1, t_2, \ldots, t_n) \]

or simply

\[p_x (x; t) \]
Random Process ... A Few More Things
We can always derive a lower order PDF from a higher order PDF by integration. For instance,

\[p_{x_1}(x_1) = \int_{-\infty}^{\infty} p_{x_1x_2}(x_1, x_2) \, dx_2. \] (15)
Random Process ... A Few More Things

We can always derive a lower order PDF from a higher order PDF by integration. For instance,
\[p_{x_1}(x_1) = \int_{-\infty}^{\infty} p_{x_1x_2}(x_1, x_2) \, dx_2. \] (15)

The mean \(\bar{x}(t) \) of a random process \(x(t) \) can be determined from the first-order PDF as
\[\bar{x}(t) = \int_{-\infty}^{\infty} xp_x(x; t) \, dx. \] (16)
A Few Other Types of Random Process
A Few Other Types of Random Process

\[x(t, \zeta_1) \]
\[x(t, \zeta_2) \]
\[x(t, \zeta_3) \]
\[x(t, \zeta_4) \]
A Few Other Types of Random Process

\[x(t, \zeta_1) \]
\[x(t, \zeta_2) \]
\[x(t, \zeta_3) \]
\[x(t, \zeta_4) \]
Auto-Correlation of a Random Process
Auto-Correlation of a Random Process

\[R_{x}(t_1, t_2) = \int_{-\infty}^{\infty} x(t_1) x(t_2) \, dx_1 \, dx_2 \]
Auto-Correlation of a Random Process

\[
R_{x}(t_1, t_2) = \mathbb{E}[x(t_1)x(t_2)] = \mathbb{E}[x_1x_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1x_2 p_{x_1x_2}(x_1, x_2) \, dx_1 \, dx_2
\]
Auto-Correlation of a Random Process

Let's consider two random processes, $x(t)$ and $y(t)$, with auto-correlation functions $R_x(\tau)$ and $R_y(\tau)$ respectively. The auto-correlation function measures the similarity between the process and a time-shifted version of itself. It is defined as:

$$R_x(\tau) = \mathbb{E}[x(t_1) x(t_2)]$$

where \mathbb{E} denotes the expectation operator.

Similarly, for $y(t)$:

$$R_y(\tau) = \mathbb{E}[y(t_1) y(t_2)]$$

These functions are important in signal processing and communication theory as they provide insights into the temporal behavior of random processes.
Auto-Correlation of a Random Process

\[R_x(\tau) = \int_{-\infty}^{\infty} f(x_1, x_2) x_1 x_2 \, dx_1 \, dx_2 \]

\[R_y(\tau) = \int_{-\infty}^{\infty} f(y_1, y_2) y_1 y_2 \, dy_1 \, dy_2 \]
Stationary Random Process
Stationary Random Process

A random process whose statistical characteristics do not change with time is classified as a stationary random process.
Stationary Random Process

A random process whose statistical characteristics do not change with time is classified as a stationary random process.
Stationary Random Process
Stationary Random Process

\[p_x(x; t) = p_x(x) \quad (17) \]
Stationary Random Process

\[p_x(x; t) = p_x(x) \]

(17)

\[R_x(t_1, t_2) = R_x(t_2 - t_1) \]

(18)
Stationary Random Process

\(p_x (x; t) = p_x (x) \) \hspace{1cm} (17)

\(R_x (t_1, t_2) = R_x (t_2 - t_1) \) \hspace{1cm} (18)

\(R_x (\tau) = \bar{x} (t) \bar{x} (t + \tau) \) \hspace{1cm} (19)
Stationary Random Process

\[p_x (x; t) = p_x (x) \] \hspace{1cm} (17)

\[R_x (t_1, t_2) = R_x (t_2 - t_1) \] \hspace{1cm} (18)

\[R_x (\tau) = \overline{x (t) x (t + \tau)} \] \hspace{1cm} (19)

A process is called stationary process only when first-order as well as all the higher order PDFs, such as \(p_{x_1 x_2 \ldots x_n} (x_1, x_2, \ldots, x_n) \) are all independent of the choice of origin.
Wide-Sense Stationary Random Process
Wide-Sense Stationary Random Process

A process may not be stationary in strict sense, yet it may have a mean value and an auto-correlation function that are independent of the shift of time origin.
A process may not be stationary in strict sense, yet it may have a mean value and an auto-correlation function that are independent of the shift of time origin.

This means

$$\bar{x}(t) = \text{constant} \quad (20)$$

and

$$R_x(t_1,t_2) = R_x(\tau), \quad \tau = t_2 - t_1. \quad (21)$$
A process may not be stationary in strict sense, yet it may have a mean value and an auto-correlation function that are independent of the shift of time origin.

This means

\[
x(t) = \text{constant} \tag{20}
\]

and

\[
R_x(t_1, t_2) = R_x(\tau), \quad \tau = t_2 - t_1. \tag{21}
\]

Such a process is known as wide-sense stationary, or weakly stationary process.
Ergodic Random Process

In ergodic process, ensemble averages are equal to the time averages of any sample function. Thus for an ergodic process \(x(t) \),

\[
x(t) = \bar{x}(t)
\]

where

\[
\bar{x}(t) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \, dt
\]

and

\[
R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x(t+\tau) \, dt
\]

An Ergodic process is necessarily a stationary process; but the converse is not true.
Ergodic Random Process

In ergodic process, ensemble averages are equal to the time averages of any sample function. Thus for an ergodic process \(x(t) \),

\[
\bar{x}(t) = \overline{x(t)} \\
R_x(\tau) = \overline{R_x(\tau)},
\]
In ergodic process, ensemble averages are equal to the time averages of any sample function. Thus for an ergodic process $x(t)$,

\[
\overline{x(t)} = \tilde{x(t)}
\]

\[
R_x(\tau) = R_x(\tau),
\]

where

\[
\tilde{x(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \, dt
\]

and

\[
R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x(t + \tau) \, dt.
\]
Ergodic Random Process

In ergodic process, ensemble averages are equal to the time averages of any sample function. Thus for an ergodic process $x(t)$,

$$
\bar{x}(t) = \overline{x(t)}
$$

$$
R_x(\tau) = \overline{R_x(\tau)},
$$

where

$$
\overline{x(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \, dt
$$

and

$$
\overline{R_x(\tau)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x(t + \tau) \, dt.
$$

An Ergodic process is necessarily a stationary process; but the converse is not true.
Why Ergodic Random Processes Notion is Important?

Because many of the stationary processes encountered in practice are ergodic with respect to at least second-order averages, i.e., with respect to mean and auto-correlation values. And we need only the first- and second-order averages when we are dealing with linear systems.
Why Ergodic Random Processes Notion is Important?

Because many of the stationary processes encountered in practice are ergodic with respect to at least send-order averages, i.e., with respect to mean and auto-correlation values.
Why Ergodic Random Processes Notion is Important?

Because many of the stationary processes encountered in practice are ergodic with respect to at least send-order averages, i.e., with respect to mean and auto-correlation values.

And we need only the first- and second-order averages when we are dealing with linear systems.
Classification of Random Processes
Classification of Random Processes
Classification of Random Processes

Random process

Wide-sense stationary
Classification of Random Processes
Classification of Random Processes

- Random process
- Wide-sense stationary
- Stationary
- Ergodic
PSD of a Random Process

PSD of a random process $x(t)$ is given as

$$S_x(\omega) = \lim_{T \to \infty} \left[|X_T(\omega)|^2 T \right], \quad (22)$$

where $X_T(\omega)$ is the Fourier transform of the truncated random process $x(t) \text{rect}(t/T)$.

PSD is related to auto-correlation function as

$$S_x(\omega) = \hat{\infty}^{-\infty} R_x(\tau) e^{-j\omega \tau} d\tau \quad (23)$$

where $R_x(\tau) = x^*(t) x(t+\tau)$.

The average power of a wide-sense random process $x(t)$ is its mean square value $P_x = \mathbb{E}[x^2(t)] = R_x(0) = \frac{1}{2\pi} \hat{\infty}^{-\infty} S_x(\omega) d\omega. \quad (24)$
PSD of a Random Process

PSD of a random process $x(t)$ is given as

$$S_x(\omega) = \lim_{T \to \infty} \left[\frac{|X_T(\omega)|^2}{T} \right],$$ \hspace{1cm} (22)

where $X_T(\omega)$ is the Fourier transform of the truncated random process $x(t) \text{rect}(t/T)$.
PSD of a Random Process

PSD of a random process $x(t)$ is given as

$$S_x(\omega) = \lim_{T \to \infty} \left[\frac{|X_T(\omega)|^2}{T} \right],$$

(22)

where $X_T(\omega)$ is the Fourier transform of the truncated random process $x(t) \text{rect}(t/T)$.

PSD is related to auto-correlation function as

$$S_x(\omega) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j\omega \tau} d\tau$$

(23)

where $R_x(\tau) = x^*(t) x(t + \tau)$.
PSD of a Random Process

PSD of a random process $x(t)$ is given as

$$S_x(\omega) = \lim_{T \to \infty} \left[\frac{|X_T(\omega)|^2}{T} \right],$$

(22)

where $X_T(\omega)$ is the Fourier transform of the truncated random process $x(t) \text{rect}(t/T)$.

PSD is related to auto-correlation function as

$$S_x(\omega) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j\omega \tau} d\tau$$

(23)

where $R_x(\tau) = \overline{x(t) x(t+\tau)}$.

The average power of a wide-sense random process $x(t)$ is its mean square value

$$P_x = \overline{x^2} = R_x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_x(\omega) d\omega.$$

(24)
Transmission of Random Processes Through Linear Systems
Transmission of Random Processes Through Linear Systems

\[x(t) \rightarrow H(\omega) \rightarrow y(t) \]

\[R_y(\tau) = h(\tau) \ast h(-\tau) \ast R_x(\tau) \] \hspace{2cm} (25)

\[S_y(\omega) = |H(\omega)|^2 S_x(\omega) \] \hspace{2cm} (26)
Transmission of Random Processes Through Linear Systems

\[R_y(\tau) = h(\tau) * h(-\tau) * R_x(\tau) \] (25)
Transmission of Random Processes Through Linear Systems

\[x(t) \xrightarrow{H(\omega)} y(t) \]

\[R_y(\tau) = h(\tau) * h(-\tau) * R_x(\tau) \] \hspace{1cm} (25)

\[S_y(\omega) = |H(\omega)|^2 S_x(\omega) \] \hspace{1cm} (26)
Sum of Random Processes

If two stationary processes (at least in the wide sense) $x(t)$ and $y(t)$ are added to form a process $z(t)$, i.e.,

$$z(t) = x(t) + y(t),$$

then

$$R_z(\tau) = R_x(\tau) + R_y(\tau) + 2\alpha_z \gamma.$$ (27)

Most processes of interest in communication problems have zero means. So, if $x(t)$ and $y(t)$ are uncorrelated with either $x = 0$ or $y = 0$

$$R_z(\tau) = R_x(\tau) + R_y(\tau)$$ (28)

and

$$S_z(\omega) = S_x(\omega) + S_y(\omega).$$ (29)
Sum of Random Processes

If two stationary processes (at least in the wide sense) \(x(t) \) and \(y(t) \) are added to form a process \(z(t) \), i.e.,

\[
z(t) = x(t) + y(t),
\]

then

\[
R_z(\tau) = R_x(\tau) + R_y(\tau) + 2 \bar{x} \bar{y}. \tag{27}
\]
Sum of Random Processes

If two stationary processes (at least in the wide sense) $x(t)$ and $y(t)$ are added to form a process $z(t)$, i.e.,

$$z(t) = x(t) + y(t),$$

then

$$R_z(\tau) = R_x(\tau) + R_y(\tau) + 2 \bar{x} \bar{y}. \quad (27)$$

Most processes of interest in communication problems have zero means. So, if $x(t)$ and $y(t)$ are uncorrelated with either $\bar{x} = 0$ or $\bar{y} = 0$

$$R_z(\tau) = R_x(\tau) + R_y(\tau) \quad (28)$$

and

$$S_z(\omega) = S_x(\omega) + S_y(\omega). \quad (29)$$
Outline

1. Introduction
2. Random Variables
3. Random Processes
4. Noise Characterization
As we have seen, there are many types of noise sources. However, we will concentrate more on thermal noise for the reasons mentioned earlier. So, let’s study about thermal noise in this section.
Random motions of electrons produce small, random voltage fluctuations at the resistor terminals, which have a zero average value but a nonzero root mean square (rms) value given by Planck's blackbody radiation law,

$$v_n = \sqrt{\frac{4hfB}{kT}} e^{hf/(kT)} - 1, \quad (30)$$

where h and k are Plank's and Boltzmann's constants, respectively.
Thermal (Johnson-Nyquist) Noise

Random motions of electrons produce small, random voltage fluctuations at the resistor terminals, which have a zero average value but a nonzero root mean square (rms) value given by Planck's blackbody radiation law,

\[V_n = \sqrt{\frac{4hfBR}{kT} - 1}, \]

where \(h \) and \(k \) are Planck's and Boltzmann's constants, respectively.
Thermal (Johnson-Nyquist) Noise

Random motions of electrons produce small, random voltage fluctuations at the resistor terminals, which have a zero average value but a nonzero root mean square (rms) value given by Planck’s blackbody radiation law,

\[V_n = \sqrt{\frac{4hfBR}{e^{hf/kT} - 1}} \]

where \(h \) and \(k \) are Plank’s and Boltzmann’s constants, respectively.
Rayleigh–Jeans Approximation

At microwave frequencies, where $hf \ll kT$, (30) can be simplified to

$$V_n = \sqrt{\frac{4kTBR}{}}. \quad (31)$$

For very high frequencies or very low temperatures, however, this approximation may be invalid, in which case (30) should be used.

From the equation (31), it is evident that thermal noise is independent of frequency. So, thermal noise is a white noise.
Rayleigh–Jeans Approximation

At microwave frequencies, where \(hf \ll kT \), (30) can be simplified to

\[
V_n = \sqrt{4kTBR}.
\]
(31)
Rayleigh–Jeans Approximation

At microwave frequencies, where $hf \ll kT$, (30) can be simplified to

$$V_n = \sqrt{4kTBR}.$$ \hspace{1cm} (31)

For very high frequencies or very low temperatures, however, this approximation may be invalid, in which case (30) should be used.
Rayleigh–Jeans Approximation

At microwave frequencies, where $hf \ll kT$, (30) can be simplified to

$$V_n = \sqrt{4kTBR}.$$ \hspace{1cm} (31)

For very high frequencies or very low temperatures, however, this approximation may be invalid, in which case (30) should be used.

From the equation (31), it is evident that thermal noise is independent of frequency. So, thermal noise is a white noise.
Maximum Available Noise Power

The power delivered to the load shown in the above figure is

\[P_n = \frac{V_n^2}{R} = kT \frac{B}{R}, \quad (32) \]

since \(V_n \) is an rms voltage. This important result gives the maximum available noise power from the noisy resistor at temperature \(T \).
Maximum Available Noise Power

Power delivered to the load shown in the above figure is
\[P_n = \frac{(V_n^2)}{2R} = kTB, \quad (32) \]
since \(V_n \) is an rms voltage. This important result gives the maximum available noise power from the noisy resistor at temperature \(T \).

Independent white noise sources can be treated as Gaussian-distributed random variables, so the noise powers (variances) of independent noise sources are additive.
Maximum Available Noise Power

Power delivered to the load shown in the above figure is

\[P_n = \left(\frac{V_n}{2R} \right)^2 R = kTB, \quad (32) \]

since \(V_n \) is an rms voltage. This important result gives the maximum available noise power from the noisy resistor at temperature \(T \).
Maximum Available Noise Power

Power delivered to the load shown in the above figure is

$$P_n = \left(\frac{V_n}{2R} \right)^2 R = kTB, \quad (32)$$

since V_n is an rms voltage. This important result gives the maximum available noise power from the noisy resistor at temperature T.

Independent white noise sources can be treated as Gaussian-distributed random variables, so the noise powers (variances) of independent noise sources are additive.
Thermal Noise - Some Observations

• As $B \to 0$, $P_n \to 0$. This means that systems with smaller bandwidths collect less noise power.

• As $T \to 0$, $P_n \to 0$. This means that cooler devices and components generate less noise power.

• As $B \to \infty$, $P_n \to \infty$. This is the so-called ultraviolet catastrophe, which does not occur in reality because Rayleigh-Jeans approximation is valid only when $hf \ll kT$.
Thermal Noise - Some Observations

- As $B \to 0$, $P_n \to 0$. This means that systems with smaller bandwidths collect less noise power.
Thermal Noise - Some Observations

- As $B \to 0$, $P_n \to 0$. This means that systems with smaller bandwidths collect less noise power.

- As $T \to 0$, $P_n \to 0$. This means that cooler devices and components generate less noise power.
Thermal Noise - Some Observations

- As $B \to 0$, $P_n \to 0$. This means that systems with smaller bandwidths collect less noise power.

- As $T \to 0$, $P_n \to 0$. This means that cooler devices and components generate less noise power.

- As $B \to \infty$, $P_n \to \infty$. This is the so-called ultraviolet catastrophe, which does not occur in reality because Rayleigh-Jeans approximation is valid only when $hf \ll kT$.
The characterization of noise effects in communication systems in terms of noise temperature and noise figure will apply to all types of noise, regardless of the source, as long as the spectrum of the noise is relatively flat over the bandwidth of the system.
Equivalent Noise Temperature

If an arbitrary source of noise (thermal or non-thermal) is white, it can be modeled as an equivalent thermal noise source, and characterized with an equivalent noise temperature, T_e. $T_e = N_0/k_B$. (33)
Equivalent Noise Temperature

If an arbitrary source of noise (thermal or non-thermal) is white, it can be modeled as an equivalent thermal noise source, and characterized with an equivalent noise temperature, T_e.

$$T_e = \frac{N_o}{kB}$$
Equivalent Noise Temperature

If an arbitrary source of noise (thermal or non-thermal) is white, it can be modeled as an equivalent thermal noise source, and characterized with an equivalent noise temperature, T_e.

$$T_e = \frac{N_0}{kB}$$

(33)
Equivalent Noise Temperature of a Noisy Amplifier
Equivalent Noise Temperature of a Noisy Amplifier

\[T_e = \frac{N_0}{GkB} \]

(34)
Noise Figure

Noise figure, F, is a measure of this reduction in signal-to-noise ratio, and is defined as

$$F = \frac{S_i}{N_i} = \frac{S_o}{N_o} \geq 1. \quad (35)$$

By definition, the input noise power is assumed to be the noise power resulting from a matched resistor at $T_0 = 290K$, i.e., $N_i = kT_0B$.

Noisy network G, B, T_e.
Noise Figure

Noisy network \(G, B, T_e \)

\[R \]

\[T_0 = 290 \text{ K} \]

\[P_i = S_i + N_i \]

\[P_o = S_o + N_o \]

Noise figure, \(F \), is a measure of this reduction in signal-to-noise ratio, and is defined as

\[F = \frac{S_i}{N_i} \geq 1. \] (35)

By definition, the input noise power is assumed to be the noise power resulting from a matched resistor at \(T_0 = 290 \text{ K} \), i.e.,

\[N_i = kT_0B. \]
Noise Figure

Noise figure, F, is a measure of this reduction in signal-to-noise ratio, and is defined as

$$F = \frac{S_i/N_i}{S_o/N_o} \geq 1. \quad (35)$$
Noise Figure

Noise figure, F, is a measure of this reduction in signal-to-noise ratio, and is defined as

$$F = \frac{S_i/N_i}{S_o/N_o} \geq 1.$$ \hfill (35)

By definition, the input noise power is assumed to be the noise power resulting from a matched resistor at $T_0 = 290K$, i.e., $N_i = kT_0B$.

$$P_i = S_i + N_i$$

$$P_o = S_o + N_o$$
Relation Between F and T_e
Relation Between F and T_e

\[P_i = S_i + N_i \]

\[P_o = S_o + N_o \]
Relation Between F and T_e

\[F = \frac{S_i}{S_o} \times \frac{N_o}{N_i} \]
Relation Between F and T_e

\[F = \frac{S_i}{S_o} \times \frac{N_o}{N_i} \]
\[= \frac{1}{G} \times \frac{Gk(T_0 + T_e)B}{kT_0B} \]
Relation Between F and T_e

\[F = \frac{S_i}{S_o} \times \frac{N_o}{N_i} = \frac{1}{G} \times \frac{Gk (T_0 + T_e) B}{kT_0 B} = 1 + \frac{T_e}{T_0} \geq 1. \]
Equivalent Noise Temperature of a Cascaded System

The noise power at the output of the second stage is

\[N_o = G_2 N_1 + G_2 kT_2 B = G_2 G_1 k (T_0 + T_{e1}) B + G_2 kT_2 B. \]

For the equivalent system we have

\[N_o = G_1 G_2 k (T_{e,\text{cas}} + T_0) B. \]

So, comparing the above equations gives

\[T_{e,\text{cas}} = T_{e1} + T_{e2} G_1. \]
Equivalent Noise Temperature of a Cascaded System

\[
N_o = G_2 N_1 + G_2 kT_e 2 B = G_2 G_1 k (T_0 + T_{e1}) B + G_2 kT_e 2 B.
\]

For the equivalent system we have
\[
N_o = G_1 G_2 k (T_{e\text{, cas}} + T_0) B.
\]

So, comparing the above equations gives
\[
T_{e\text{, cas}} = T_{e1} + T_{e2} G_1. \tag{37}
\]
The noise power at the output of the second stage is

\[N_o = G_2N_1 + G_2kT_e2B = G_2G_1k (T_0 + T_{e1}) B + G_2kT_{e2}B. \]
Equivalent Noise Temperature of a Cascaded System

The noise power at the output of the second stage is

\[N_0 = G_2 N_1 + G_2 kT_{e2} B = G_2 G_1 k (T_0 + T_{e1}) B + G_2 kT_{e2} B. \]

For the equivalent system we have

\[N_0 = G_1 G_2 k (T_{e,\text{cas}} + T_0) B. \]
The noise power at the output of the second stage is

\[N_o = G_2 N_1 + G_2 k T_{e2} B = G_2 G_1 k (T_0 + T_{e1}) B + G_2 k T_{e2} B. \]

For the equivalent system we have

\[N_o = G_1 G_2 k (T_{e,\text{cas}} + T_0) B. \]

So, comparing the above equations gives

\[T_{e,\text{cas}} = T_{e1} + \frac{T_{e2}}{G_1}. \]
Noise Figure of a Cascaded System

\[
T_0(\text{\textit{F}}_{\text{\textit{cas}}} - 1) = T_0(\text{\textit{F}}_1 - 1) + T_0(\text{\textit{F}}_2 - 1) \quad \text{G}_1
\Rightarrow \text{\textit{F}}_{\text{\textit{cas}}} = \text{\textit{F}}_1 + \text{\textit{F}}_2 - 1 \quad \text{G}_1.
\]
Noise Figure of a Cascaded System

\[T_e,_{\text{cas}} = T_e_1 + T_e_2 G_1. \]

\[T_0(F_{\text{cas}} - 1) = T_0(F_1 - 1) + T_0(F_2 - 1) G_1 \]

\[F_{\text{cas}} = F_1 + F_2 - 1 G_1. \]
Noise Figure of a Cascaded System

\[T_{e,\text{cas}} = T_{e1} + \frac{T_{e2}}{G_1}. \]

\[\Rightarrow T_0 (F_{\text{cas}} - 1) = T_0 (F_1 - 1) + \frac{T_0 (F_2 - 1)}{G_1} \]

\[\Rightarrow F_{\text{cas}} = F_1 + \frac{F_2 - 1}{G_1}. \] \hspace{1cm} (38)
Generalization
Generalization

For an arbitrary number of stages, $T_{e,\text{cas}}$ and F_{cas} are given as
Generalization

For an arbitrary number of stages, $T_{e,\text{cas}}$ and F_{cas} are given as

$$T_{e,\text{cas}} = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1G_2} + \cdots , \text{ and}$$

(39)
Generalization

For an arbitrary number of stages, $T_{e,\text{cas}}$ and F_{cas} are given as

$$T_{e,\text{cas}} = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1G_2} + \cdots,$$ \hspace{1cm} (39)

$$F_{\text{cas}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} + \cdots.$$ \hspace{1cm} (40)
Lossy Line held at Physical Temperature T
Consider a lossy line (lossy lines or networks containing passive elements can generate only thermal noise) with a matched source resistor that is also at temperature T as shown in the figure.

The power gain, G, of a lossy line is less than unity; the loss factor, L, can be defined as $L > 1$.

Input noise power is kTB. Because the entire system is in thermal equilibrium at the temperature T, and thermal noise power is independent of the resistance value, the output noise power also must be $N_o = kTB$.

- T is the physical temperature.
- R is the thermal noise resistance.
- $N_i = kTB$ is the input noise power.
- $L, T, Z_o = R$ are the loss factor, temperature, and characteristic impedance, respectively.
- $N_o = kTB$ is the output noise power.
Consider a lossy line (lossy lines or networks containing passive elements can generate only thermal noise) with a matched source resistor that is also at temperature T as shown in the figure.
Consider a lossy line (lossy lines or networks containing passive elements can generate only thermal noise) with a matched source resistor that is also at temperature T as shown in the figure.

The power gain, G, of a lossy line is less than unity; the loss factor, L, can be defined as $L = 1/G > 1$.
Consider a lossy line (lossy lines or networks containing passive elements can generate only thermal noise) with a matched source resistor that is also at temperature T as shown in the figure.

The power gain, G, of a lossy line is less than unity; the loss factor, L, can be defined as $L = 1/G > 1$.

Input noise power is kTB. Because the entire system is in thermal equilibrium at the temperature T, and thermal noise power is independent of the resistance value, the output noise power also must be $N_o = kTB$.
Lossy Line held at **Physical Temperature** T
Lossy Line held at **Physical Temperature** T

Thus, we have

$$N_0 = kTB = GkTB + GN_{\text{added}}$$

where N_{added} is the noise generated by the line, as if it appeared at the input terminals of the line.
Lossy Line held at **Physical Temperature** T

Thus, we have

$$N_0 = kTB = GkTB + GN_{\text{added}}$$

where N_{added} is the noise generated by the line, as if it appeared at the input terminals of the line. Rearranging the above equation gives

$$N_{\text{added}} = kTB \frac{1 - G}{G} = kTB \left(L - 1 \right).$$
Lossy Line held at **Physical Temperature** T

Thus, we have

$$N_0 = kTB = GkTB + GN_{\text{added}}$$

where N_{added} is the noise generated by the line, as if it appeared at the input terminals of the line. Rearranging the above equation gives

$$N_{\text{added}} = kTB \frac{1 - G}{G} = kTB (L - 1).$$

From the above equation, it is clear that the **equivalent noise temperature** of the lossy line is

$$T_e = (L - 1) T.$$
Lossy Line held at **Physical Temperature** T

Thus, we have

$$N_0 = kTB = GkTB + GN_{\text{added}}$$

where N_{added} is the noise generated by the line, **as if it appeared at the input terminals** of the line. Rearranging the above equation gives

$$N_{\text{added}} = kTB \frac{1 - G}{G} = kTB (L - 1).$$

From the above equation, it is clear that the **equivalent noise temperature** of the lossy line is

$$T_e = (L - 1) T.$$

So, **noise figure** of the lossy line is

$$F = 1 + \frac{T_e}{T_0} = 1 + (L - 1) \frac{T}{T_0}.$$
Lossy Line held at Physical Temperature T

Thus, we have

$$N_0 = kTB = GkTB + GN_{\text{added}}$$

where N_{added} is the noise generated by the line, as if it appeared at the input terminals of the line. Rearranging the above equation gives

$$N_{\text{added}} = kTB \frac{1 - G}{G} = kTB (L - 1).$$

From the above equation, it is clear that the equivalent noise temperature of the lossy line is

$$T_e = (L - 1) T.$$

So, noise figure of the lossy line is

$$F = 1 + \frac{T_e}{T_0} = 1 + (L - 1) \frac{T}{T_0}.$$

When $T = T_0$, for lossy networks, $F = L$.